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Abstrac{ The solution of certain ';['Beplitz linear systems is considered in this paper. This kind
of systemﬁ%ge encountered when we solve certain partial differential equations by finite difference
techniques and approximate functions using higher order splines. The methods presented here are

more efficient than the Cholesky decomposition method and are based on the circulant factorization

of theg"‘ba.nded circulant™ matrix, the use of the Woodbury formula and algebraic perturbation
.y — ’
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1. Introduction

We wish to consider the linear system of the form

L IR S
L J

(1.1) Az =,

where the coefficient matrix is an nth order symmetric banded matrix of Toeplitz form

CRAARRE ARG LI

[ao ay ... ap \
a .
ap
(1.2) A( = ’
ap
g
k a ... ay ag/
or cyclic form Acqfi?f;on ."P"bg )
NTIS GRA&I
(ao ai e Gp ap ... al\ DT"C TAB D
a, . . o Ux:anrllounced a
. .. . . ; Ju::t.lfication______l
: S .. ap '
ap B
. . . ' Tiotributien/
(1.3) A = . ' . . ) . LLo "-:11‘ab111ty Codes
.. T e .. ' avail and/or
. . . . i 0 Special
.. . ‘. . ap ; ’
i R I AU
,: .'. .‘. .'. .'. ap . . o
kal coe ap ap “es al ao

z = (21,22,...,Z,)7 is the unknown n-vector, and f is the given right hand side.

This class of linear systems occures in solving certain kind of boundary value problems by

. finite difference techniques, solving biharmonic equation by Fourier method, and in higher order
spline approximation|2, 3, 4, 6, 10].

System (1.1) with coefficient matrix of form (1.2) can be solved by band Cholesky decompo-

sition[7] or by Toeplitz factorization{6]. Although the operation counts of the two methods are

1




s e tos aaag 3 < L vew . . . e, B o [ i T Eafiir o
A i T B R A T e L R R S P L N . . -

about the same the later oue requires less storages. If the system has coefficient matrix of form

I (1.3), then the Cholesky decomposition is expensive, and the circulant factorization presented here
is more favorable in terms of not only arithmetic operations but also storage requirements. The
methods presented in this paper are based on the fact that under certain condition the matrix in
(1.3) can be factored into two simpler circulant matrices, and the corresponding circulant system

i may then be solved by using the Woodbury formula[8]. Furthermore, the banded Toeplitz matrix

may be treated as a perturbation of circulant matrix, and Toeplitz systems can be solved by the

combination of the circulant factorization and the use of algebraic perturbation method|9].

In §2, we will describe the method for factoring a symmetric banded circulant matrix into two

' circulant matrices, and then use the factors to solve the band circulant system in §3. The methods
. for solving band Toeplitz systems will be studied in §4, and finally, some numerical results will be
given in §5.
b 2. Factorization of banded Circulant Matrices
g To factor the banded circulant matrix given by (1.3) we consider the real polynomial with the
b elements of the matrix as its coefficients
(] (2.1) #(z) =apP+---+az+agtarz”t+ -+ apz7?,
the characteristic function of matrix A. Assume, without loss of generality, that a, = 1. We have
the following theorem.
l Theorem 2.1. If matrix A is strictly diagonal dominant, i.e. |ag| > 2(|a1| + - - - + |ap|), then there
- exists a real polynomial l(z) = Bo + P1z+ - + Bpz¥, |Bol > 1, Bp = 1, with all roots outside the
B unit circle such that the characteristic function ¢(z) can be factored as
) ) y
) (2.2) é#(2) = ﬁ—l(z) (277).
0
N Proof. We show at first that the polynomial ¢(z) has no root on the unit circle. If there exists a
. number zp on the unit circle which is a root of the equation
' (2.3) #(z) =0,
:: then 29 = €' for some real 8, 0 < # < 27. Substituting zp into (2.3) we bave
;' ap =~ [al (e“ + e"'") +:+ap (e“" + e""”)]
:'_ =—2[ajcosf + -+ apcospd].
. 2
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It follows that

laof < 2(las| + - -+ + |apl).

which is a contradiction to the assumption of the theorem.

We now note that
6(z) = ¢(z71),

and (2.3) is a reciprocal equation(l]. Thus if 2o is a root of (2.3), then so is z5'. It follows that

#(2) has p pairs of roots zgk) , zgk), such that

(¥)
1

and 2,/ are outside the unit circle.

Let

(2.4) I(z) = f] (z - zg"’) .

k=1

We now prove that I(2) is a real polynomial. If all the roots z}k) are real, then p(z) is real; if some

of the zy‘) ’s are complex, then their conjugate complex numbers, which are outside the unit circle
too, are the roots of (2.3) since the coefficients of the equation are real. So, it is obvious that I(2)

is a real polynomial and satisfies (2.2), and the proof is completed.

It is easy to verify that the corresponding circulant matrix A, can be factored as

(2.5) A, =5 LLT,
where
( Bo Bp -+ B \
By By
Z - . .
k ﬂp : 50}
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To compute the factor I(z), we solve the equation (2.3). When p = 2 it is well known|[1, 5)
that the roots of equation (2.3) are given by .

( 1 3
=3 [m+\/n¥—4 )
1 r
p2=3 r/x-\/n?-4],
(2.6) J ; ,
1 2
Pz =3 n2+\/n3 — 4|,
1] i
Pa=g5 N2 — 77%_4 )
\ 2 L P
where

(2.7)

1

m=g3 [—a1+\/a'f—4ao+8] ,
1
2

Having computed the roots we choose the two roots the absolute values of which are greater than

1as zgl) and z{z), and form the coefficients of the factor I(z) via
Bo = 22",
(2.8) By = — (zﬁ” + z§z)) ’

B2=1.

When g is greater than 2 we have to use some numerical method, for example the Newton-
Raphson method, to solve equation (2.3), and then use the relations between the roots and coefhi-

cients to calculate the factor I(z).

3. The Solution of Band Circulant Systems

In this section we will use the circulant factorization described in the previous section to

develop a method for solving the band circulant system

(3.1) Az=f

as well as computing the inverse of banded circulant matrices.

It is evident that the system can be solved by solving following two systems

(3.2) Ly=d

4

...........
-----------------

..................




M MR ArE A A

and
(3.3) LTz =y,
where
(3.4) d = Bof.
Let
(Po \
P ,
\ By - Po )
and
ﬂp v ﬂl
R= - :
By

Then L can be written
~ I
L=1L+ o R(OT L),

where I, is the pth order identity matrix and O the (n — p)-by-p zero matrix. Using the Woodbury

formuia|8], the inverse is given by

- I L\ '
L-1=L-1-L-1(0") [R“+(OT 1,,)L-1((;)] (0T )L},

and the solution of (3.2) is

I L\1™!
y=L-‘d-L"(O”> [R“+(OT I,)L“(O”)] (0T I,)L7'd,

or

(3.5) y=h-Wy,

where h = (h;, hy,... ,ha)T, W and g are the solution of the following equations, respectively
(3.6) Lh=d,

)

O Y WA

oy




(3.7) LW = (O ) s

(3.8) Bg ==z,
and
hn-—p+l
z= : ,
hn
I,
(3.9) B=R1+ (0T I)L! ol

To compute the pth order matrix B, we first solve the equation (3.7). Since W is the first p
columns of L~!, and L is a lower triangular Toeplitz matrix and so is its inverse, W is uniquely

defined by the first column of L™!, which is the solution of the equation
(3.10) Lw = (1,0,...,0)7,

and can be computed with O(pn) operations.

Denote by wy,ws,...,w, the components of vector w, then we have

(™ )
w2 w
(3.11) w=| . :
: . w)
\Wn w"—[ e wn-p+1 )
and
Wn-p+1l Wa-p ... Wn-2p42
(3.12) (0T L)W= ,
Wn Wn~1 L3O wﬂ-’+l

which is also a Toeplitz matrix.
The matrix R~! is an upper triangular Toeplitz matrix and can be calculated with O(p?)

operations. Thus B is Toeplitz, so solving (3.8) will cost O(p?) operations. Having computed B

6
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and solved the equations (3.6), (3.7) and (3.8}, the auxiliary vector y can be found, and we can

then solve equation (3.3) in a similar way. Since

Z—T = L-T _ L—T(O

)B“T(I, oT)L 7,
P

and

(0]
z=LTy- L7
I

) B—T( I, oT )L-Ti/v
the solution vector z is given by

(3.13) z=r-Vs,

where r = (ry,72,..., rn)T is the solution of the equation

(3.14) LTr =y,
and
(wn*p+l Wnwp+2 - Un
Wn—p UWp—ptl -~  Wn-]
' (3-15) ‘/' = wn w2 fcc wn—.p+l Py
w
\ w1 J

and s is the solution of the equation
(3.16) BTs = (r1,r2,...,75)7.

The asymptotic operation counts of the method would be O(5pn) excluding the amount of work to
calculate the factor /(z). In most usual case, p =1 or 2, and finding /(z) does not cost much work.
The algorithm may be summarized as follows.

Algorithm BCS (Banded Circulant Solver) solves banded circulant system (3.1). Assume that the

parameters fo, 1, ..., Bp are precomputed.
1. Solve equation (3.6) for h by forward substitution.
2. Solve equation (3.10) and form W via (3.11).
7
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. Compute R~! by backward substitution, and form matrix B.
. Solve equation (3.8) for g using a Toeplitz type method.

. Calculate the solution vector y of (3.2) via (3.5).

. Solve equation (3.14) for r.

. Form V' via (3.15).

. Solve (3.16) for s.

O 0w = O o e W

. Compute the solution vector z via (3.13).

endalgorithm
Algorithm BCS can be modified to compute the inverse of banded circulant matrix. Since A,
is a symmetric circulant matrix its inverse A;! is also a symmetric circulant, which is uniquely

defined by its first column. that is the solution of the equation
(3.17) A= (1,0,...,0)7.

The algorithm BCS may directly be employed to solve equation (3.17). But in this case the
first two steps of the algorithm are essentially the same, so we obtain the following algorithm for
inverting banded circulant matrix requiring O(4pn) operations by modifying the first two steps of

the algorithm BCS and computing the solution of equation
(3.18) Ly=5o(1,0,...,0)7,

instead of equation (3.2) in step 5 of the algorithm BCS. ,
Algorithm BCI (Banded Circulant Inverse) computes the inverse of banded circulant matrix. As-
sume that the parameters Go, 51, ..., Bp are precomputed.
1. Solve equation (3.10) and form W via (3.11).
. Compute h = Fouw.
. Compute R™! by backward substitution, and form matrix B.
. Solve equation (3.8) for g using a Toeplitz type method.
. Calculate the solution vector y of (3.18).
. Solve equation (3.14) for r.
. Form V via (3.15).

00 =2 O O b W N

. Solve (3.16) for s.
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9. Compute the first column of the desired inverse via (3.13) and form it.

endalgorithm

4. Band Toeplitz Systems

The band Cholesky decomposition is an efficient method for solving general band symmetric

systems|7], and it can of cource be used to solve band Toeplitz system
(4.1) Az = f

But the application of this method to Toeplitz systems not only costs a lot of arithmetic operations
but also requires a great amount of storages since it does not take the advantage of the structure of
Toeplitz matrix. Fischer etc.[6] proposed the Toeplitz factorization method for the solution of band
Toeplitz systems, which has some advantages both in terms of arithmetic operations and storage
requirements. In this section we wil] use the circulant method described in last section to develop
an alternative to the Toeplitz factorization for solving band Toeplitz system (4.1).

Banded Toeplitz matrix A; may be considered to be a (2p)-rank perturbation of the banded

circulant matrix A, i.e.

I 0]
(4.2) A=A-| " |uoT I,)- uT(1, oT).
(0] I,
where
ap PRI al
U=
ap

Substituting (4.2) into (4.1) we have

(4.3) Az - (g)U(OT I)z - (IO)UT(I,, 0Tz = 7.

If matrix A, is strictly diagonal dominant, then the corresponding circulant matrix A, is

likewise, and therefore is nonsingular, and from (4.3) we have

o
(4.4) z—Agl(g’)U(oT Ip)x-—Ac'l(I

)UT(J,, oT)z=A]f.
P

Let z(1) = (z1,--. -Ip)Ts D = (Zp+1,- - 9xn—v)Ta and z®) = (ZTn-p+15--- axn)r’ and

¢
B,=A;‘((’)’),

9
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B A"O
3 = 41, Ip,

which are the n-by-p submatrices consisting of the first and the last p columns of matrix A7l

respectively. Then equation (4.4) becomes
(4.5) z=y+ BUz® + BsUTz(1)

which shows that the solution to equation (4.1) is the linear combination of the solution of the

corresponding circulant system
(4.6) Ay=/f

and the first p and the last p columns of the inverse of the corresponding circulant matrix.

The solution to (4.6) can be obtained by algorithm BCS in O(5pn) operations, and the inverse
of A, can be calculated in O(4pn) operations by using algorithm BCI. The inverse A7 1 is, as we
pointed out above, symmetric circulant and defined by its first column, the elements of which are

denoted by uy, uz, ..., u, satisfying
Up-i = Uis2, 1=0, 1,...,[(”"'2)/2J,

where | 2] is the integer floor function of 2. We then have

Uy U ... ... Uy
u2
A7t=| & oo e ],
u2
Up ..+ .. U2 U]

and therefore

uy
(4.7) B,

-

Un~p+1

10
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and
( Un—p+1 Un \
(48) Bs = s
)
\ Up vee  eaa u) )

To compute the first p and the last p components of the unknown vector z, we premultiply

equation (4.5) by (I, OT) and (OT 1I,), respectively, resulting the following linear system
I, - My UT) z(0) — My U23) = 1)
. { (p = M4,07)

-M,UTzM) 4 (1, - AI};U) 23 = (3,

where M, and M, are the pth order submatrices of A, 1 at the northwest and northeast corner,

respectively, i.e.

Up ... oo Yy
Ma=lo L]

Up ... ... U

u,._,.,.] cee see Un
w-| L
Upn-2p+2 -+ o+ Un—p+l

and y(1), y(3) are the p-vectors with the first and the last p components of vector y as their elements,
respectively.

Forming the coefficients of equation (4.9) will cost O(2p?) operations and (4.9) can be solved by
Gaussian elimination with O(8p®) operations. Having calculated y, u, z(1) and z(3), the subvector
2(?) can be obtained via (4.5) with O(2pn) operations. When p <« n, the asymptotic operation
counts of the aigorithm would be O(11pn) excluding the amount of work to compute the factor
i(z). The algorithm thus procceds as follows.

Algorithm BTS (Band Toeplitz Solver) solves band Toeplitz system (4.1). Assume that the pa-

rameters Bo, B, ..., Bp are precomputed.

11




1. Solve for y equation (4.6) by using algorithm BCS.

AN O3

2. Compute the first column vector u of AJ! using algorithm BCIL. .
3. Form and solve equation (4.9) for z{1) and z(3),
5 4. Compute vector z(?) via (4.5), which along with z(1) and z(3) is the solution. @

endalgorithm

5. Numerical Experiments

The algorithms described in this paper were tried on the APVAX of the Department of Com-
puter Science, Yale University, and compared with Toeplitz factorization and Cholesky decompo-
sition. The programs were written and timed in FORTRAN.

To obtain some insight of the accuracy of the algorithms, we generated a number of vectors
randomly, which were considered to be the “exact” solutions and then multiplied them by the
coefficient matrices to generate the corresponding right hand sides. The equations were solved by

- using the algorithm BCS and BTS as well as the Toeplitz factorization and Cholesky method. In
: all the experiments the results differ from the “exact” solutions only in the last digit, indicating
that the algorithms presented in this paper are stable.

In our all tests we let p = 2 and chose several matrices satisfying the assumption in theorem

) 2.1. The execution time of algorithm BTS and the Toeplitz factorization are almost the same.
For solving circulant systems the algorithm BCS is about twenty times faster than the Cholesky

method in our tests, and saves a lot of storages.
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